M.Sc. - Mathematics
 I Semester End Examination - May 2022 ELEMENTARY NUMBER THEORY

Course Code: MM106S
Time: 3 hours

QP Code: 11006

Total Marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. a) Prove that given integers a and b with $b>0$, there exist unique integers q and r satisfying $a=q b+r, 0 \leq r<b$.
b) Find the $\operatorname{gcd}(a, b)$, where $a=-427, b=616$ and express $\operatorname{gcd}(a, b)=a x+b y$.
2. a) State and prove fundamental theory of arithmetic.
b) If $m>1$ and $p=2^{m}-1$ is prime then prove that m is prime.
c) Prove that an integer $n>1$ is composite if and only if it is divisible by some prime $p \leq \sqrt{n}$.

$$
(6+5+3)
$$

3. a) State and prove the necessary and sufficient condition for existence of solution for linear congruence $a x \equiv b(\bmod n)$.
b) If m is a positive integer and a is any integer such that $\operatorname{gcd}(a, m)=1$, prove that $a^{\phi(m)} \equiv 1(\bmod m)$. Hence deduce $a^{p-1} \equiv 1(\bmod p)$, where p is prime which does not divide a.

$$
(7+7)
$$

4. a) Given a prime p, let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}$ be a polynomial of degree n with integer coefficient such that $c_{n} \not \equiv 0(\bmod p)$, then prove that the polynomial congruence $f(x) \equiv 0(\bmod p)$ has atleast n solutions.
b) Solve the system of linear congruences

$$
\begin{equation*}
x \equiv 1(\bmod 3), x \equiv 2(\bmod 4), x \equiv 3(\bmod 5) \tag{7+7}
\end{equation*}
$$

5. a) Define Legendre symbol. State and prove Euler's criterion for Legendre symbol.
b) State and prove Gauss lemma.
6. a) Evaluate the Legendre symbol (504|23).
b) State and prove quadratic reciprocity law for Jacobi symbol.
7. a) Prove that there is no prime p of the form $4 k+3$ is a sum of two squares.
b) Prove that an odd prime p expressible as sum of two squares if and only if $p \equiv 1(\bmod 4)$.
8. a) Prove that any positive integer can be expressed as sum of four squares.
b) State and prove Fermat's last theorem for the case $n=4$.
